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Abstract
Background: Taxonomy is the biological discipline that identifies, describes, classifies and names extant and extinct 
species and other taxa. Nowadays, species taxonomy is confronted with the challenge to fully incorporate new theory, 
methods and data from disciplines that study the origin, limits and evolution of species.

Results: Integrative taxonomy has been proposed as a framework to bring together these conceptual and 
methodological developments. Here we review perspectives for an integrative taxonomy that directly bear on what 
species are, how they can be discovered, and how much diversity is on Earth.

Conclusions: We conclude that taxonomy needs to be pluralistic to improve species discovery and description, and to 
develop novel protocols to produce the much-needed inventory of life in a reasonable time. To cope with the large 
number of candidate species revealed by molecular studies of eukaryotes, we propose a classification scheme for 
those units that will facilitate the subsequent assembly of data sets for the formal description of new species under the 
Linnaean system, and will ultimately integrate the activities of taxonomists and molecular biologists.

Review
Taxonomic renaissance
There is little doubt that the central unit for taxonomy is
the species, and that associating scientific names
unequivocally to species is pivotal for a reliable reference
system of biological information [1]. Since the advent of
Linnaean nomenclature in 1758, taxonomists have been
describing and naming thousands of species every year--
currently around 15.000-20.000 among animals only
[2,3]--numbers that rapidly increase for many groups of
organisms due to the incorporation of new tools for dis-
covery and the exploration of poorly known areas of the
planet [4-8]. Indeed, this progress is being made possible
despite important impediments [9] because species tax-
onomy is resurging as a solid scientific discipline [10] that
incorporates technological advances, such as virtual
access to museum collections [11], high-throughput
DNA sequencing [12], computer tomography [13], geo-
graphical information systems [14], and multiple func-
tions of the internet [15]. Also, taxonomic information is
increasingly digitized and made available through several
global initiatives, such as Species2000, The Encyclopae-

dia of Life (EOL), The Global Biodiversity Information
Facility (GBIF), or ZooBank. The future has been envi-
sioned to be an interactive "cybertaxonomy" with
dynamic online description and publication of new spe-
cies, and where updated taxonomic information would be
accessible for almost everybody from everywhere [16,17].

However, modern taxonomy still faces two major chal-
lenges. First, a qualitative challenge is to reach scientific
consensus about the basic category around which taxon-
omy is built --the species-- and thus improve species
delimitation. The second, a quantitative challenge, is the
sheer number of species on earth that require discovery
and description, estimated in at least 10 million, only
considering eukaryotes, and of which a small fraction of
less than 2 million have so far been named [18]. These
challenges are closely tied to two deliverables that the sci-
entific community and society expects from taxonomy.
On one hand, to provide empirical rigor to species
hypotheses and stability to their names, which requires a
careful and often painstaking and time-consuming labor
of species delimitation. On the other hand, an accelera-
tion in the pace of species description, with the peril of
erroneous species hypotheses and thus of unstable
names.

We here review recent proposals for the development
of taxonomy that have been launched to meet both chal-
lenges. We argue that recent conceptual advances will
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allow taxonomy to improve species delimitation through
the integration of theory and methods from disciplines
studying the origin and evolution of species. Also, we
emphasize the importance of applying existing integra-
tive protocols and of developing novel ones for proceed-
ing toward a complete inventory of life on Earth in a
reasonable time.

Integrative taxonomy
Most evolutionary biologists will now agree that species
are separately evolving lineages of populations or meta-
populations [sensu [19]], with disagreements remaining
only about where along the divergence continuum sepa-
rate lineages should be recognized as distinct species
[20,21]. This emerging consensus might appear as a
minor advance, but it has led to a renewed discussion
about species delimitation that is paramount for catalyz-
ing the integration of new knowledge and methods of
population biology, phylogenetics, and other evolution-
ary disciplines into taxonomy [22-32]. Taxonomists are
realizing that what matters for the study of speciation
matters for taxonomy as well, and that species will be bet-
ter delimited if we know what caused their origin and
determined their evolutionary trajectories. As illustrative
examples, the discovery and description of three Califor-
nian species of trapdoor spiders [33] required inferences
about the origin, genetic structure and degree of ecologi-
cal interchangeability of divergent lineages; and a recent
taxonomic revision of cardinal birds [34] involved the
reconstruction of the populational, phylogenetic and bio-
geographic history of lineages.

One consequence of this trend is that after more than
250 years of predominance of comparative morphology
in species discovery, new methods and data--mainly
molecular--are conquering a great piece of the realm of
taxonomy. Although many taxonomists have received
with joy the prospects of this new taxonomy
[11,12,16,35,36], others are more skeptical [37,38]. None-
theless, a general view has emerged that now is the time
to construct a more "integrative taxonomy" that would
accommodate new concepts and methods [36,37,39-41],
and a considerable number of studies have already
echoed the new term "integrative taxonomy" [28,31,42-
45]. A close look at this literature reveals, however, a lack
of consensus about what an integrative taxonomy should
be. For example, Dayrat [36] proposes to broadly inte-
grate molecular methods and approaches of population
genetics at the expense of classical taxonomic proce-
dures, while others hold just the opposite idea [37,38].
Also, major disagreements concern the degree of congru-
ence that different characters must show to consider a
population or a group of populations as a separate spe-
cies. For example, some taxonomists see congruence
among molecular and morphological characters as a nec-

essary requisite [36,40,43] while, for others [23,41,46], the
strength of integration lies in avoiding any a priori selec-
tion of character combinations. We here dub these two
frameworks as "integration by congruence" and "integra-
tion by cumulation", respectively (Figure 1) and explain
their advantages and limitations.

Integration by congruence
Congruence approaches have a long tradition in system-
atics. In phylogenetics, hypotheses of character homol-
ogy can be examined following the principle of reciprocal
illumination, in which each individual character hypothe-
sis is evaluated by the extent to which it agrees with the
overall favored phylogenetic hypothesis [47]. In contrast,
the congruence approach for species discovery does not
examine character hypotheses but lineage divergence
hypotheses and can thus most convincingly be founded
on population genetics theory [but see [37,38]. In this
framework, phylogeographers introduced the genealogic
concordance method of phylogenetic species recognition,
GCPSR [48]. The GCPSR states that congruent identifi-
cation of a population-level phylogenetic lineage by sev-
eral unlinked genetic loci indicates that it is genetically
isolated from other such lineages, and thus qualifies as a
species, because only in such isolated lineages will the
coalescent histories of the different markers agree. Inte-
gration by congruence follows the same rationale under
the assumption that concordant patterns of divergence
among several taxonomic characters indicate full lineage
separation. Taxonomists also expect that species so dis-
covered will more often correspond with distinct evolu-
tionary units because it is highly improbable that a
coherent pattern of character concordance will emerge by
chance. As an example, DeSalle and collaborators [49]
illustrated in a work diagram that congruence between
two taxonomic characters is an important factor to reach
a conclusion about species status (Figure 2a-2c). Different
combinations of taxonomic characters may be deemed
necessary by different investigators to propose and sup-
port species (Figure 3a), such as the congruence of
molecular and morphological characters [36,43], or even
more restrictive combinations requiring evidence about
reproductive isolation [50,51].

The major advantage of the congruence approach is
that it promotes taxonomic stability: most taxonomists
will agree on the validity of a species supported by several
character sets, as long as it is clear that they are unlinked
and fixed (see below). The major limitation inherent in
demanding congruence among taxonomic characters is
the risk of underestimating species numbers (Figure 1)
because the process of speciation is not always accompa-
nied by character change at all levels [e.g. [52], and the
relative rates of character change during lineage diver-
gence are heterogeneous (Figure 4). Indeed, several
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Figure 1 Schematic representation of two approaches of integrative taxonomy. Background yellow, red, and blue colors represent the spec-
trum of character variation, each dot being an independent evolutionary linage that requires identification and delimitation as separate species. Inte-
gration by cumulation (left) identifies species limits with divergence in one or more not necessarily overlapping taxonomic characters (e. g. mtDNA 
or morphology), whereas the integration by congruence (right) identifies species limits with the intersection of evidence from two or more indepen-
dent taxonomic characters (e. g. mtDNA plus morphology). Both methods of integration have relevant limitations. The integration by cumulation ap-
proach may over-estimate the number of species by identifying distinct species where there is intraspecific character variation only. As an example, 
conspecific populations can be very distinct in terms of morphology but will be erroneously regarded as distinct species (alpha error or false positive). 
On the contrary, integration by congruence is a highly stringent approach that might under-estimate the number of species by being unable to detect 
cryptic or young species (beta error or false negative, represented here by three encircled species among all the undetected ones). Actually, there is 
a trade-off between the lack of reliability of the species detected by integration by cumulation, and the lower taxonomic resolving power of the inte-
gration by congruence.
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Figure 2 The "taxonomic circle" representation of work protocol for species recognition. This protocol (redrawn from [49]) is a schematic rep-
resentation of the congruence approach to taxonomy proposed by DeSalle and collaborators [49]. Dotted lines in (a) connect lines of evidence used 
to discover species or support previous hypotheses. The recognition of a species is considered when congruence between a taxonomic character 
and geography allows breaking out of the circle (arrows). For example, in classical taxonomy (b) the occurrence of morphologically distinct specimens 
at different locations can be used to propose and support a species hypothesis. In the case of cryptic species (c), morphology fails to support the hy-
pothesis but other characters (e.g. molecular) do provide support.
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Figure 3 Schematic representation of work protocols in taxonomy. Workflow in (a) integrative taxonomy by congruence and (b) by cumulation; 
(c) work protocol to define Unconfirmed Candidate Species (UCS), Confirmed Candidate Species (CCS) and Deep Conspecific Lineages (DCL) in an 
automated approach that starts with DNA barcoding [8]; and (d) a general work protocol for integrative taxonomy proposed here that combines ad-
vantages of cumulative and congruence approaches. Increasing black color intensity in a-d represents increasing uncertainty about species status 
and the need of a more thorough evaluation of data.

congruent 
differences in 
another taxonomic 
 character
+ syntopy

two distinct species

Confirmed candidate species (CCS)
UCS

Deep 
conspecific 
lineage 
(DCL)

probably
distinct species

two distinct species

molecular divergence 
above or below threshold
+ congruent differences
in any other character
+ syntopic occurrence

molecular data above 
threshold; no further 
data available

no further
data
available

no further
data
available

no further
data
available

Unconfirmed 
candidate
species (UCS)

UCS UCS UCS

congruent 
differences 
in a taxonomic 
character
mediating
sexual isolation

congruent differences
in a character
mediating
reproductive isolation

congruent differences 
in a character 
known to be of 
diagnostic value 
in the study organisms

congruent differences 
in any other unlinked 
taxonomic character 

other explanations for
character congruence
can be excluded

difference in single character 
+ other evidence
for separation of 
evolutionary lineages

congruent differences 
in any other
character 

congruent differences 
in additional
taxonomic character
(e.g., molecular)

congruent differences 
in additional
taxonomic character
(e.g., behavioural)

congruent differences 
in additional
taxonomic character
(e.g., ecological)

two distinct species two distinct species two distinct species

one
species

one 
species

one 
species

two groups of 
specimens with 
differences in a 
taxonomic 
character (e.g., 
morphological)

two groups of 
specimens with 
differences in a 
taxonomic 
character (e.g., 
morphological)

a

b

c

d

no congruence no congruence

no congruence no congruence

no congruence

no congruenceno syntopy; molecular 
divergence above threshold

two clusters of 
specimens
 identified 
through 
DNA barcoding

no syntopy no congruence no congruence difference not relevant for species delimitation

differences in additional
taxonomic character 
(e.g., molecular)

survey additional 
characters if possible

survey additional 
characters if possible

differences in additional 
taxonomic character 
(e.g., ecological)

no taxonomically relevant differences

taxonomist considers 
observed differences in 
one or several characters 
to be taxonomically relevant

possibly 
two distinct 
species

possibly 
two distinct 
species two distinct species

no differences no differences

Integrative taxonomy by congruence

Integrative taxonomy by cumulation

Candidate species approach

Consensus protocol for integrative taxonomy

two groups of 
specimens with 
differences in a 
taxonomic 
character (e.g., 
morphological)



Padial et al. Frontiers in Zoology 2010, 7:16
http://www.frontiersinzoology.com/content/7/1/16

Page 6 of 14
empirical studies support the view that lack of character
congruence is a frequent situation [reviewed for arthro-
pods by [41]] resulting from the different modes and cir-
cumstances of speciation [e.g. [24,53-55]. A further risk
of applying integration by congruence could be the bias
toward uncovering older species. Species that diverged in

the distant past will have an increased probability of
showing complete gene lineage sorting and reciprocal
monophyly for many loci [56]. The probability of new
mutations--and thus character differences--arising and
being fixed through adaptive or neutral processes also
increases (Figure 4). Furthermore, extinction of relatives

Figure 4 Schematic representation of character divergence and fixation in several speciation scenarios. Character divergence varies quanti-
tatively during lineage evolution, with later stages being characterized by marked differentiation (character fixation) at multiple levels, reciprocal 
monophyly of most gene genealogies, and reproductive isolation [21]. In situations of neutrality or when species are not subjected to novel selective 
regimes (a, and left lineage of b)-- character fixation is stochastic, due to neutral processes as random genetic drift or because characters are not ac-
quired and fixed in the same order under balancing selection-- a situation known as mutation-order speciation [94]. In cases of speciation along new 
selective pressures (right lineage of b, c and d), characters subjected to selection are expected to become fixed at early stages of divergence [57,58]. 
This is especially evident in sympatry or parapatry (c) when disruptive selection causes fitness-dependent character fixation [57,95]. In most scenarios 
the origin of reproductive incompatibilities will be the result of the epistatic effect of new mutations, under divergent or balancing selection [96]. Re-
productive isolation is expected to proceed more rapidly if there is divergent selection, both in allopatry (b, c; [e.g. [97]]), and in sympatry or parapatry 
(d; [reviewed by [57]]), or in those situations where a character mediating species recognition becomes fixed [77,78]. However, recent evidence indi-
cates that reproductive incompatibilities do not necessarily need to have an adaptive origin, and that they can be the cause of lineage splitting in a 
neutral or nearly neutral scenario. For example, when the accumulation of new mutations, gene movement, or gene duplication lead to hybrid dys-
function [55]. A textbook-example could be the recurrent cases of polyploidy speciation in plants [98].
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creates larger gaps among old species, whereas recent
radiations may often be overlooked by a strict consensus
approach [53]. For example, in Darwin's finches or some
lineages of cichlid fishes, groups of closely related species
show striking morphological differences that originated
through fast divergent selection associated with ecologi-
cal transitions, but show weak reproductive isolation, low
genotypic clustering, and little neutral genetic differentia-
tion [reviewed by [55]].

Integration by cumulation
The framework of integration by cumulation is based on
the assumption that divergences in any of the organismal
attributes that constitute taxonomic characters can pro-
vide evidence for the existence of a species [23]. This
approach defends the view that because all taxonomic
characters are contingent in existence, order of appear-
ance, and magnitude of divergence during speciation, the
only way for true integration is allowing any source of evi-
dence--even a single one--to form the basis for species
discovery. In this approach congruence is desired but not
considered necessary [23]. In practice, evidence from all
character sets is assembled cumulatively, concordances
and discordances are explained from the evolutionary
perspective of the populations under study, and a deci-
sion is made based on the available information, which
can lead to recognition of a species on the basis of a single
set of characters if these characters are considered good
indicators of lineage divergence (Figure 3b[41,46]).

A major advantage of this approach is that it does not
bind species delimitation to the identification of any par-
ticular biological property. Taxonomists can thus select
and focus on the most appropriate set of taxonomic char-
acters for each group of organisms. Indeed, this has been
the traditional approach of morphological taxonomy
(Figure 3b) before the massive incorporation of other
characters. Also, cumulation is probably most suitable to
uncover recently diverged species in adaptive radiations
[53] due to the stepwise process of speciation along eco-
logical gradients [57,58]. The main limitation of the
cumulative approach is that the uncritical use of a single
line of evidence (e.g. a single locus of mtDNA) can lead to
overestimation of species numbers (Figure 1). For exam-
ple, because of genetic drift, small populations isolated
only for a very short period could already become recip-
rocally monophyletic with respect to some character and
be thus diagnosable. Such situations do not represent the
type of diversity of interest to most ecologists and evolu-
tionary biologists [59] and the question remains if these
populations should be recognized and named as species
or not. As an example, Meiri and Mace [50] disagreed
with the recognition of Bornean and Sumatran popula-
tions of the clouded leopard Neofelis nebulosa diardi as a
full species [60] for exactly that reason. Indeed, other

cases of elevation of subspecies to species rank in several
groups of organisms [review by [4]], but especially in
birds and primates [61], have been criticized as an unjus-
tified inflation of biodiversity with detrimental conse-
quences for macroecology and conservation [61].
However, in many situations the steep increase of species
numbers reflects a genuine discovery of previously
unknown evolutionary lineages and thus valuable taxo-
nomic progress [5-7].

Taxonomic characters
Further discussion about the alternatives for integration
requires a closer look to what these approaches try to
integrate--the characters. Taxonomic characters are
organismal traits used as evidence for species discovery
[62]. Characters can (i) be classified by the level of biolog-
ical organization of the attributes to which they refer: bio-
chemical, molecular, morphological, behavioral or
ecological. They can (ii) be qualitative or quantitative, to
describe variation that is discrete or continuous. Charac-
ters can (iii) have fixed states (that is, for each of the com-
pared species or population there is a unique state for all
individuals); or be polymorphic within species but with
states distributed in different frequencies across species.
Most important for taxonomy--and often-neglected--is
the classification of characters (iv) by the evolutionary
processes that shaped them (sexual or natural selection,
or genetic drift), and by the role they play in the specia-
tion process (Figure 4).

Taxonomists need to resort to different taxonomic
characters to conform to the biological peculiarities of
particular taxa. For example, behavioral characters--
especially those genetically fixed without ontogenetic
learning--such as call patterns of insects, bats and frogs,
are routinely used by taxonomists working on those
groups [e.g. [63]], and their use has led to the discovery of
many cryptic species in some groups of organisms [64].
Also, the ecology of organisms can be an important
source of evidence in some cases. For example, the degree
of ecological interchangeability may be a decisive taxo-
nomic character to distinguish between closely related
species [26,33,65]. In bacteria, the lack of a conspicuous
morphology coupled with extensive gene transfer has
forced taxonomists to develop a model-based strategy
that combines data on ecology and on genetic diversity to
delimit species [66,67].

However, much of the discussion around integrative
taxonomy deals with the merits of morphological versus
molecular characters [36-39,41,49]. For practical and his-
torical reasons most species have been primarily
described based on morphology, including color. As a
main advantage, morphological characters often serve to
allocate individuals to species immediately by visual
inspection, and are applicable to living as well as pre-
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served specimens and fossils. Disadvantages are: (i) there
is always a subjective component when defining and
interpreting character states, (ii) demonstrating the fixa-
tion of a state requires large sample sizes [68], (iii) the
continuous rather than discrete nature of many charac-
ters on which taxonomists heavily rely, e.g., reptile scale
counts [69] or mollusk shell size and shape [70], and (iv)
their unsuitability for some groups of organisms, either
because speciation occurs without morphological change
[52], which leads to morphologically cryptic species [64],
or because morphological structures are labile or difficult
to study--e.g. as in prokaryotes [66,67].

Molecular characters used in taxonomy have histori-
cally been allozymic or chromosomal (number and struc-
ture of chromosomes), but today these are mostly
sequences of mitochondrial (or chloroplast) DNA and,
increasingly, of nuclear genes. While the analysis of
allozymes has the advantage of simultaneously screening
variation at several presumably unlinked nuclear loci,
DNA sequences provide many more characters (nucle-
otide sites), can be amplified from much smaller samples,
and can be obtained in unprecedented amounts through
high-throughput sequencing from fresh samples, pre-
served historical collection material, and even from Pleis-
tocene fossils [71]. DNA sequences can be examined
using non-tree based methods to provide diagnostic dif-
ferences among species [49], but most frequently they are
analyzed using tree-based methods to search for mono-
phyletic groups that could represent species [22]. A limi-
tation of tree-based methods is that it remains difficult to
choose which among the multiple strongly supported
clades detected represent species. Also, a growing body
of evidence shows that discordance between species trees
and gene trees is a common phenomenon caused by pro-
cesses such as incomplete lineage sorting, hybridization,
gene duplication, reticulated evolution, or recombination
[54]. These situations greatly complicate the resolution of
taxonomic problems [72,73]. Most promising are tree-
based methods that rely on coalescent theory [54,74],
because they can identify signals of species divergence
even under complex circumstances of gene tree incon-
gruence and non-monophyly [e.g. [26]]. A recent large-
scale study on insects of Madagascar [75] shows that sin-
gle-locus coalescent models perform well for both testing
and discovering species from large sample sets even with-
out prior hypotheses of population coherence, providing
thus a potential empirical substitute for traditional tree-
based methods for preliminary biodiversity screening and
species identification (e.g., DNA barcoding approaches).

The merits of taxonomic characters under the integrative 
taxonomy framework
To be usable in an integrative taxonomy, characters
should be evaluated taking into account the evolutionary

forces driving the speciation process (Figure 4). This new
perspective may help to overcome many of the long-
standing discussions about characters in taxonomy. For
example, as long as characters have a genetic basis, are
unlinked and are not influenced by the same selective
pressures, any character should be considered as an inde-
pendent, equivalent and combinable unit. In other words,
the potential of a character to clarify a taxonomic prob-
lem has to be carefully evaluated in every situation, and a
particular nucleotide or morphological character state
might be deemed more important than all other nucle-
otides and morphological characters, because it might be
particularly informative to understand the process of lin-
eage splitting and divergence. For instance, in those cases
where the speciation process is driven by sexual and/or
by natural selection, characters known to be under the
influence of any of these forces in one species might be
directly indicative of lineage divergence in the whole tax-
onomic group to which this species belongs and, thus, be
more informative than those that are known to evolve
neutrally.

Such inferences need to be based on careful evaluations
to avoid circularity of arguments. As a very obvious
example, in a group of animals where speciation has been
demonstrated to be mainly driven by sexual selection of
male colouration, differences in colour will be given a
higher importance as taxonomic character than in a
group of subterraneous and blind species. If speciation in
a clade of phytophagous insects is known to be driven
mainly by the switch to new host plants, then the discov-
ery that a new population belonging to this clade feeds on
a novel host plant might be a more relevant taxonomic
character than it would be in a clade of host plant gener-
alists. And in a group of microendemic species where
specialization to narrow and distinct bioclimatic enve-
lopes has been demonstrated to be the main force leading
to speciation, the specialization of a newly discovered
population to a bioclimatic niche distinct from all known
species in the group might be a suitable argument to
advocate its species status, while in groups where most
species are known to be tolerant of a variety of biocli-
mates such data would be less relevant.

In general, sexually selected characters might be more
likely to represent species-specific differences than natu-
rally selected characters because they contribute to the
reproductive cohesion and isolation of species while, at
the same time, their rapid evolution contribute to create
larger gaps between closely related species. Thus, the
most important taxonomic characters would be those
indicative of reproductive isolation or limited gene flow,
such as crucial mutations in "speciation genes" [76] or any
trait that directly mediates a premating or postmating
reproductive barrier, such as wave form and frequency
differences in advertisement calls of insects or frogs, or
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genital structures of arthropods and squamate reptiles.
For example, a single amino acid substitution can suffice
to produce striking plumage differences mediating spe-
cies recognition and leading to speciation in birds [77].
Also, differences in a coding vision gene can affect female
mating preferences and initiate lineage divergence in fish
[78]. Some researchers further argue that molecular
markers prone to high intraspecific gene flow might be
less affected by interspecific gene flow, and be thus more
effective for delimiting species [27], because in cases of
gene introgression among sister species substantial
intraspecific gene flow will reduce the frequency of intro-
gressed alleles. But, also, the first move in speciation can
result of the accumulation of multiple neutral mutations
in DNA sequences causing hybrid incompatibilities [55],
which make those mutations ideal diagnostic characters
to separate species.

In short, future discussions in taxonomy should not be
about morphology versus molecules but about how char-
acters reflect lineage divergence or about the functional
relevance of some characters in the speciation process.
As a consequence, taxonomy will no longer be a science
restricted to the description of patterns but will be tightly
linked to the study of processes generating diversity.

Candidate species
In the practice of current (increasingly molecular) sys-
tematics, phylogeography and DNA barcoding studies of
eukaryotes are revealing units that might represent
potential new species at a faster pace than results can be
followed up by taxonomists. This situation suggests a
need for guidelines to order and classify this undescribed
diversity. The bacteriological concept of candidate spe-
cies [79] has recently been explored and applied to verte-
brates for such units [8,63,80,81]. A further developed
stepwise working protocol (Figure 2c) recognizes three
subcategories of candidate species [8]. Groups of individ-
uals within nominal species showing large genetic dis-
tances, but without further information, are considered
unconfirmed candidate species (UCS) deserving further
study. When additional data indicate that these genealog-
ical units are not differentiated at the species level, they
are flagged as deep conspecific lineages (DCL). The third
category, confirmed candidate species (CCS), applies to
those deep genealogical lineages that can be considered
good species following standards of divergence for the
group under study but that have not yet been formally
described and named. For example, confirmed candidate
species are sister lineages in syntopy showing no evidence
of interbreeding, or allopatric lineages with distinct mor-
phological or bioacoustical character divergences.

A more standardized nomenclatural system might help
to communicate with precision about candidate species,
inventory them and track their changing status. Murray

and Schleifer [79] proposed a formal naming system for
candidate prokaryotes that consists in placing the epithet
Candidatus before a preliminary species name, as for
example: "Candidatus Liberobater asiaticus". This system
has since been broadly accepted and implemented in the
Bacteriological Code. However, it is inapplicable for
eukaryotes because the zoological and the botanical
codes do not specify minimum scientific criteria for rec-
ognizing species names as valid. Thus, while "Candidatus
Liberobater asiaticus" can be kept as an informal name
until the species is proved to be valid by accepted stan-
dards of the discipline and becomes thus formally
described, any informal name given to a candidate spe-
cies of animal could qualify as valid name under the Zoo-
logical Code if the proposal is accompanied by a voucher
and diagnostic differences (e.g. exclusive haplotypes).

For different groups of animals, naming schemes of
candidate species have been established. As one example,
catfishes of the family Loricariidae are provided with so-
called L-numbers, a system of consecutive numbers
introduced in 1988 by R. Stawikowski, A. Werner and U.
Schliewen, in which each putative new species is referred
by a unique number combination after the letter "L"--
from Loricariids. These numbers are designated upon
publication of photographs of unknown color variants of
Loricariids in the German journal "Die Aquarien und
Terrarien Zeitschrift" and are used beyond the realm of
aquariologists.

A standardization of such schemes across taxonomic
groups of eukaryotes would be clear progress for data
retrieval systems. A naming scheme for candidate species
should not be mistaken for a substitute or competition
with the established Linnaean system of nomenclature
but, rather, it is a mean to facilitate the assembly of data
sets that could eventually lead to the description of new
species under the Linnaean system. To avoid conflicts
with the Codes of nomenclature, we propose to designate
candidate species of eukaryotes through the combination
of the binomial species name of the most similar or
closely related nominal species, followed (in square
brackets) by the abbreviation "Ca" (for candidate) with an
attached numerical code referring to the particular candi-
date species (more than one candidate might be recog-
nized under a valid species), and terminating with the
author name and year of publication of the article in
which the lineage was first discovered. The vouchers the
candidate species cfould be the GenBank accession num-
bers of the sequences used to propose the candidate sta-
tus, or any equivalent information (e.g. MorphoBank
accession numbers for morphological candidate species,
or a voucher specimen number from a public collection).
As an example, Hirudo medicinalis [Ca3 Siddall et al.
2007], would be the exclusive name combination refer-
ring to a particular candidate species of European leech
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(Ca3), as defined in the corresponding reference [82].
This system should be flexible enough to accommodate
situations in which no unambiguous candidate species
definition has been proposed in a study--in this case,
referring to a GenBank accession number should be pos-
sible: Hirudo medicinalis [Ca3 EF405599], where the
number refers to a highly divergent sequence of H. medic-
inalis. When not even a tentative assignment of a candi-
date species to a most similar nominal species is possible,
then it would be possible to assign a candidate species
just to a genus or family, i.e., Hirudo sp. [Ca3 EF405599]
or Hirudinidae sp. [Ca3 EF405599].

This system maintains the traditional structure of bino-
mial species names and helps to list together both valid
and candidate species in hierarchical and alphabetically
ordered databases as GenBank, or repositories of mor-
phological or geographical data. Adding a numerical code
helps to avoid repetitive proposal of candidates; and Gen-
Bank accession numbers provide a direct link to source
data. Candidate species should create a link between the
activities of molecular biologists (e.g. ongoing DNA
barcoding initiatives) and taxonomists to redirect taxo-
nomic efforts and accelerate species descriptions.

Conclusions and future perspectives for an 
integrative taxonomy
The past years have seen an important reduction of taxo-
nomic impediments: conflicts about species concepts are
being replaced by a consensus on the view of species as
lineages [see [25]]; the access to crucial taxonomic infor-
mation is facilitated by a growing body of cyber-infra-
structures such as species names databases, digitized
original descriptions, and online imagery of type speci-
mens and historical literature [83]; the enormously suc-
cessful journal Zootaxa provides an example of a fast
platform for the publication of zoological taxonomic
studies [3]; widespread use of DNA sequence data has led
taxonomy to an enormous acceleration in the identifica-
tion of cryptic species [review by [64]] and candidate spe-
cies [8,80,81,84-88]. We hypothesize that those advances
have overall contributed species description rates to
remain roughly stable at 14,000-25,000 per year since
1970 [89] despite a decrease in the number of taxono-
mists [90]. However, if estimates of 10 million eukaryote
species on Earth were correct [18], we would need, at the
present pace, some 400 years of constant activity of taxo-
nomic research to attain a "complete" inventory of life.
This is not a reasonable time given that human activity is
driving species to irremediable extinction at a rate never
experienced before [91]. We identify five major working
lines for the scientific development of integrative taxon-
omy that will accelerate species description without com-

promising accuracy [cf. [92]] (Table 1). However, the
success will not exclusively depend on the development
of new concepts and approaches. Most importantly, more
taxonomists and more funding for taxonomy are urgently
needed [90]. A stronger focus on actually publishing sys-
tematic revisions and species descriptions should, too, be
part of a strategy to alleviate the taxonomic impediment
[93].

Although traditional procedures will remain useful in
many cases, taxonomy needs to be pluralistic and inte-
grate new approaches for species delimitation if it is to
become a modern evolutionary discipline. Thus, for
example, the "Family Union"--in Joe Felsenstein's words--
between the fields of population genetics and phylogeog-
raphy with phylogenetics through coalescent theory,
which has been considered as one of the most exciting
recent developments in systematics [69] (see also http://
treethinkers.blogspot.com/), should also strongly benefit
taxonomy. Shadows of past conflicts between morpholo-
gists and molecular biologists should now fade and dis-
cussions will not be about simply integrating different
kinds of characters, but rather different concepts and
methods of population genetic, phylogeographic, and
phylogenetic analyses. There is probably no magic bullet
for species discovery and delimitation, but an integrative
and evolutionary framework provides taxonomists with a
larger arsenal to face the realities of inventorying the
actual--and woefully underestimated--biodiversity of the
planet.

Appendix
Glossary of selected terms used in the text
Allele: one of two or more alternative forms of a gene
that arise by mutation and are found at the same locus in
a chromosome.

Allopatry: the condition of species or populations
occurring in separate, non-overlapping geographical
areas.

Candidate species: a set of organisms identified as a
putative new species.

Coalescent theory: retrospective model of population
genetics that employs a sample of individuals from a pop-
ulation to trace all alleles to the most recent common
ancestor.

DNA barcoding: the use of short standardized DNA
sequences to identify species.

Ecological niche: environmental conditions under
which a species exist.

Gene lineage: ancestor-descendant series of alleles.
Locus (plural loci): a fixed position on a chromosome

that may be occupied by one or more alleles of a gene.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF405599
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF405599
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF405599
http://treethinkers.blogspot.com/
http://treethinkers.blogspot.com/
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Table 1: Work areas for the scientific and technical development of integrative taxonomy

Improving taxonomic work protocols Development of pragmatic operational protocols to discovering and describing 
species (Figure 2d). There is an inevitable trade-off between using complex 
integrative approaches for delimiting species that may provide stable names, 
and the need to accelerate the pace of taxonomic descriptions [92]. Indeed, of 
the many empirical methods available for species delimitation [22,25], most 
require extensive sampling, absence of missing data, and/or complete species-
level molecular phylogenetic trees. Clearly, for most areas and groups of diverse 
organisms of the world, data at hand will be insufficient for in-depth studies of 
evolutionary separation of lineages.

Refinement of probabilistic procedures to evaluate 
character congruence

New methods should be able to deal with the heterogeneity of the evolutionary 
process, with situations of character incongruence, and to include fixed 
characters states as well as states distributed in different frequencies across 
populations. In this sense population geneticists have efficient tools to estimate 
if combinations of alleles occur more frequently than expected randomly -a 
situation termed linkage disequilibrium [99]- and this method can be applied to 
discover cryptic sympatric species [e.g., [100]]. Also, phylogeneticists have 
developed approaches as CONCATERPILLAR [101], which take into account 
different evolutionary rates of different loci and allow identification of those 
that should be analyzed independently or concatenated. Extending such 
approaches to non-molecular characters could result in more rigorous protocols 
of integrative taxonomy.

Development of modular software for species 
delimitation, description and publishing.

Besides including phylogenetic and population genetics modules, as in 
Mesquite [102], such software should include modules for statistical analysis of 
morphological data, should be able to extract character information from bi- 
and tri-dimensional imagery [103] and from sequence data (such as pure and 
private diagnostic nucleotide substitutions, e.g. [49]), and should also 
incorporate packages for ecological and geographical modeling and mapping, 
as well as for bioacoustics. It could also implement a package for building 
standardized species descriptions that could be directly submitted for peer-
review to major taxonomic journals at the same time that supporting data are 
automatically sent to biodiversity databases (e.g. GBIF, Species2000, Zoobank, 
GenBank, CBOL, MorphoBank); hyperlinked species descriptions represent an 
advance in this sense [13].

Automated identification of candidate species Development of methods for automatically identifying, naming, documenting 
and cataloguing candidate species through the combination of DNA barcoding 
and digital image processing [12,103]. These approaches could be especially 
helpful for the preliminary screening of hyperdiverse groups such as small 
arthropods and nematodes, or for geographical areas facing imminent habitat 
destruction (and therefore in need of rapid inventories of species diversity and 
conservation priorities).

Application of genomic analyses to taxonomy 
(GenoTaxonomy).

Population genomics aims to identify regions of the genome with greater 
differentiation than expected from the average across many loci affected by 
reduced gene flow due to reproductive isolation or local adaptation [104]. The 
automatic identification of those regions, to be used as diagnostic characters, 
might be the key to substantially accelerate species discovery, especially if 
applicable through modular taxonomic software. Given the enormous 
expected increases of genomic data [105] such approaches will soon become 
applicable.
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Monophyletic group: a group consisting of an ancestor
and all its descendants.

Neutral character: observable or quantifiable organis-
mal trait whose evolution and variation can be explained
by random processes.

Non-neutral character: observable or quantifiable
organismal trait whose evolution and variation can be
explained by natural or sexual selection.

Parapatry: the condition of species or populations
occurring in contiguous geographical areas.

Paraphyletic group: a group consisting of an ancestor
and some of its descendants.

Phylogenetics: biological discipline focused on recon-
struction of the evolutionary relationships among organ-
isms.

Phylogeography: study of historical processes respon-
sible for intraspecific patterns (or patterns among closely-
related species) of geographical distribution and diversity
of gene lineages.

Species hypothesis: the hypothesis that a group of
populations represents a separately evolving and diver-
gent lineage.

Species lineage: ancestor-descendant series of meta-
populations.

Speciation: the array of processes that result in the
origination of new species.

Subspecies: infraspecific Linnaean category some-
times used to classify allopatric or parapatric populations
showing some degree of divergence--traditionally in mor-
phological traits--not considered large enough for the
species rank.

Sympatry: the condition of species occurring in the
same geographical area.

Syntopy: the condition of species occurring in the
same locality at the same time.

Systematics: biological discipline that studies evolu-
tionary patterns of biological diversity, including the
fields of taxonomy and phylogenetics.

Taxonomy: biological discipline that identifies,
describes, classifies and names extant and extinct living
beings and deals with the theory of classification.

Taxonomic character: observable or quantifiable
organismal trait used to separate species.
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